Tech Mining to Identify Emerging Technology Opportunities

July, 2009

Alan Porter

Director of Research and Development aporter@searchtech.com

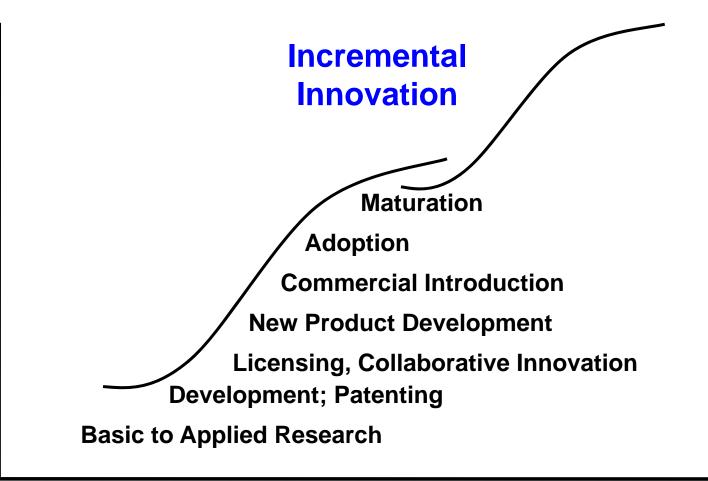
&

Technology Policy & Assessment Center Georgia Tech

AGENDA

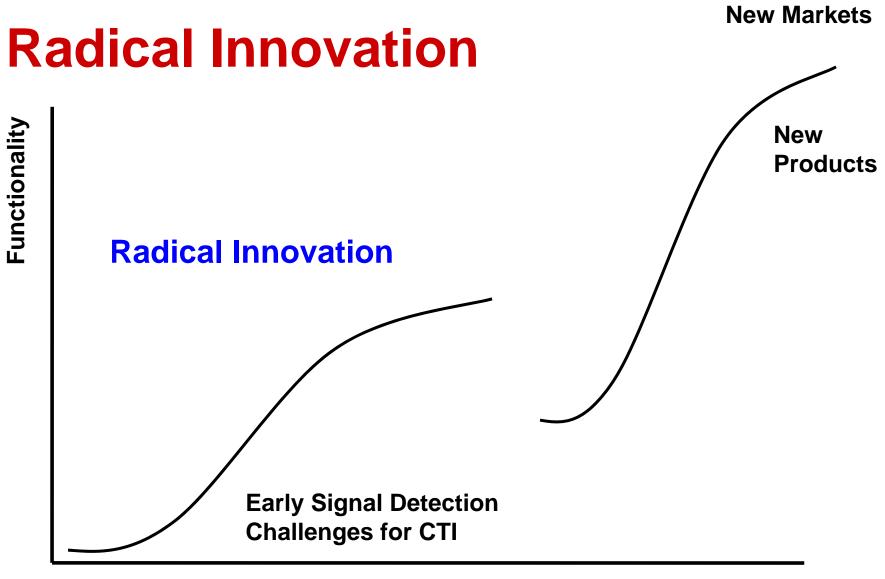
- 1. Introduction
 - a. Open Innovation
 - b. Tech Mining
- 2. Tech Mining Tales
 - a. "Research Profiling" Country study: Brazil
 - Biomaterials Patenting: Technology Opportunities Analyses
 - c. NanoBioSensors: Innovation Path Mapping
- 3. Could these tools work for you?

1. Introduction


- Open Innovation
- Tech Mining

Types of Innovation

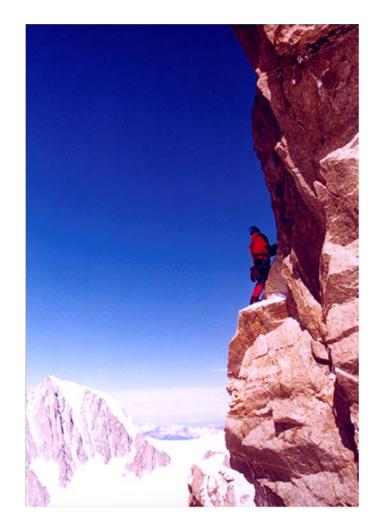
- Incremental Innovation
- Radical Innovation
- Open
 Innovation



A "Linear" view of Innovation Processes

Functionality

Time



Time

Radical Innovation: A Tougher Challenge

- Discontinuous change

 implies unfamiliarity
- Increasingly sciencebased technologies (challenge to predict breakthroughs)
- Need to address sociotechnical systems – contextual factors less stationary

Internal Path: R&D Management

- Project selection & evaluation
- Concurrent engineering
- Life cycle design & Sustainability analyses [external issues important too!]

External Path: Technology Acquisition

- Intelligence
- Assessment
- Multiple paths
 - purchase: integrated systems or piecewise
 - customer/supplier collaboration to innovate
 - technology licensing
 - joint ventures

Sources of Innovation

•	Internal Research and Development	\$\$\$\$
	Requires fixed assets and labor	
•	Mergers, Acquisitions	\$\$\$
	Requires capital	
•	License Intellectual Property	\$\$
	Requires the ability to absorb invention	
•	Leverage "Knowledge Economy"	\$
	Requires the ability to leverage external ideas	

Open Innovation: Leveraging the Knowledge Economy

- "Most innovations fail."
- "And companies that don't innovate die."

Chesbrough, H. W. (2003). <u>Open Innovation – The New Imperative for</u> <u>Creating and Profiting from Technology</u>, Harvard Business School Press, Boston, MA.

Example: P&G Connect and Develop

- Procter & Gamble's New Model for Innovation
- "35% of company's innovation and billions of dollars in revenue"
- "R&D productivity has increased by nearly 60 percent"
- "R&D investment as a percentage of sales is down from 4.8 percent in 2000 to 3.4 percent today"

"Connect and Develop: Inside Procter & Gamble's New Model for Innovation," Harvard Business Review, Vol. 84, No. 3, March 2006, http://hbswk.hbs.edu/archive/5258.html "External collaboration plays a key role in nearly 50 percent of P&G's products. We've collaborated with outside partners for generations but the importance of these alliances has never been greater.

🖉 https://secure3.verticali.net/pg-connection-portal/ctx/noauth/PortalHome.d 🔽 🔒 🐓 🗙 connect and develop

"Our vision is simple. We want P&G to be known as the company that collaborates inside and out — better than any other company in the world."

A.G. Lafley Chairman of the Board and Chief Executive Officer

P&G Connect + Develop - Portal Home

www.pgconnectdevelop.com, April 2008

- 🗆 ×

🐴 🔹 🛼 👻 🖶 🗣 🎲 Page 👻 🙆 Tools 🔹 🕢

Modeling Innovation

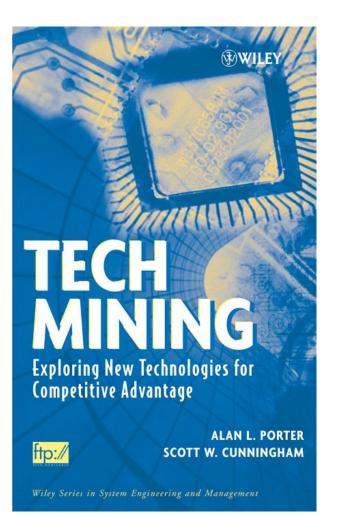
Two Innovation Process Dimensions Revisited

- Extent of change: Continuous vs. Discontinuous (Radical Innovation)
- Where new knowledge comes from: Internal vs. External (Open Innovation)

Make sense?

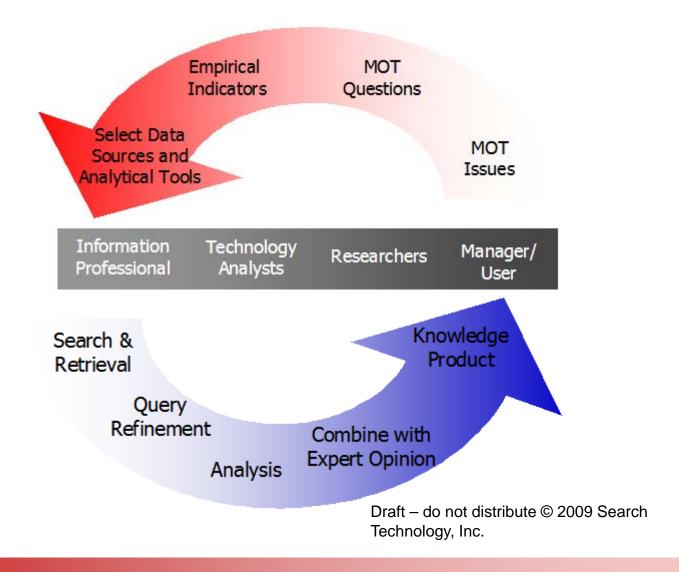
Where do your interests fall?

Why Tech Mining?



- Welcome to the age of too much information.
- We need to treat: text as data to gain intelligence.
- Mine "ST&I" [Science, Technology & Innovation] information resources to answer technology management questions = Tech Mining.
- Enable Open Innovation

How do you extract EFFECTIVE INTELLIGENCE FROM ALL THAT SCIENCE, TECHNOLOGY & INNOVATION ("ST&I")INFORMATION?


Tech Mining

Alan L. Porter and Scott W. Cunningham John Wiley & Sons Inc., 2005

Draft - do not distribute © 2009 Search Technology, Inc.

The Tech Mining Process

Tech Mining Foci

Two main types of analysis

- Competitive Intelligence
 - Focus on one or more target organizations
- Technology Intelligence
 - Focus on a target technology

Draft – do not distribute © 2009 Search Technology, Inc.

The 13 MOT Issues

- R&D Portfolio Selection
- R&D Project Initiation
- Engineering Project Initiation
- New Product Development
- New Market Development
- Mergers
- Acquisition of Intellectual Property
- Exploiting one's own
 Intellectual Assets

- Collaboration in
 Technology Development
- Identifying and Assessing
 Competing Organizations
- Tracking and Forecasting Emerging or Breakthrough Technologies
- Strategic Technology
 Planning
- Technology Roadmapping

The 39 MOT Questions (Part 1)

- What emerging technologies merit our ongoing attention?
- What facets of this technology development are especially hot?
- What are new frontiers for this technology?
- Are there significant subtypes of the technology?
- How does this technological development fit within the technological landscape?
- What is driving this technological development?
- What are key competing technologies?

- How bright are the development prospects for this technology?
- What are the likely development pathways for this technology?
- What are the important component technologies?
- What is the maturity of the component technologies?
- Is there any potential for technology fusion?
- Should we apply for particular patents relating to this technology? (What claims?)
- What does the technology road map look like?

The 39 MOT Questions (Part 2)

- What is the maturation of systems which apply to this technology?
- Which aspects of the technology match our application interests?
- What are our brightest opportunities in this emerging technology?
- What societal and market needs do this technology and its applications address?
- What applications offer promise for this technology?
- What are the global opportunities?
- What is the competitive environment?
- What is changing in the competitive environment?

- Does this technology offer strong commercialization prospects?
- Who are the available experts?
- Which universities or research labs lead in this technology?
- What are the strengths and gaps within our own organization?
- Which companies lead in this technology?
- Which companies lead in critical aspects of this technology?
- How strong are the leading companies' R&D teams?
- How do leading companies' development emphases compare to ours?

The 39 MOT Questions (Part 3)

- What other technological strengths does each leading company have?
- Characterize a company's IP relating to this technology.
- What smaller companies or individuals have attractive IP relating to this technology?
- Who is partnering with whom?
- Competitor profiling?
- What companies should we place on watch?
- Who might be prospects to license our IP?
- How entrepreneurial is the competitive environment?
- Assessing Competitors

Types of Questions

Text and data mining techniques are good at addressing:

> WHO?
 > WHAT?
 > WHEN?
 > WHERE?

And, especially, combinations of these

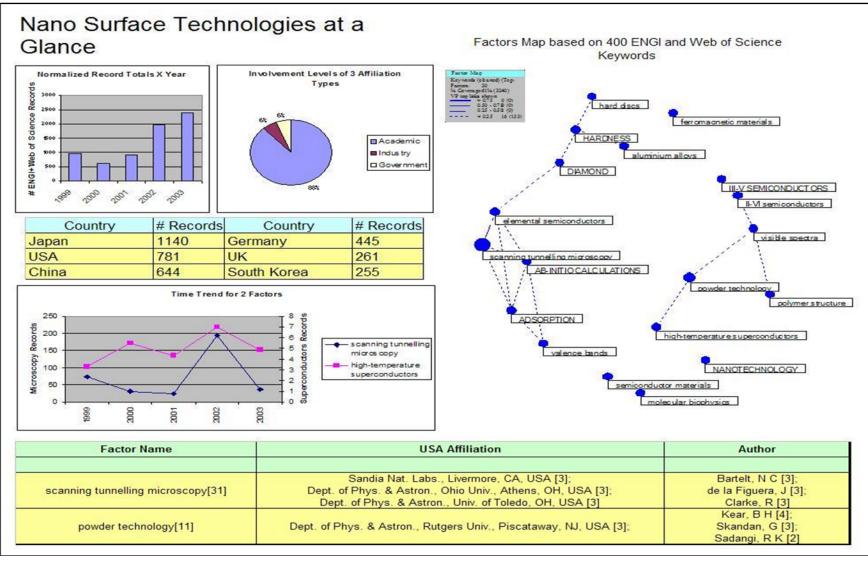
Additional questions usually require more human insight:

≻HOW?>WHY?

Draft – do not distribute © 2009 Search Technology, Inc.

INNOVATION INDICATORS

- Technology Life Cycle Indicators
 - e,g, growth curve location & projection
- Innovation Context Indicators
 - e.g., presence or absence of success
 factors (funding, standards, infrastructure, etc.)
- Product Value Chain and Market Prospects Indicators
 - e.g., applications, sectors engaged


Draft – do not distribute © 2009 Search

Technology, Inc.

A few of the 200+ MOT Indicators

- Time slice profiles by main topics showing changing research emphases
- Velocity (rate of patenting and rate of change of patenting)
- Research Activity Landscape maps "blackspaces"?
- Score relative science base (% of patents citing R&D papers, and whose)
- Research networking: Map co-author & co-inventor teaming
- Benchmarking: North Carolina's relative strengths [academic + industry]

One Pagers

Draft - do not distribute © 2009 Search Technology,

Inc.

How to do Tech Mining: 8-steps

- 1. Spell out the questions and how to answer them
- 2. Get suitable data
- 3. Search (iterate)
- 4. Import into text mining software (VantagePoint)
- 5. Clean the data
- 6. Analyze & interpret
- 7. Represent the "innovation indicators" well communicate!
- 8. Standardize and semi-automate where possible

Draft – do not distribute © 2009 Search Technology, Inc.

Mining for what? Patterns (+ "gold nuggets")

Use Co-word Bibliometrics/Co-occurrence statistics to find relationships

- Count the number of times words appear together in a set of documents
- The higher the co-occurrence, the stronger the potential relationship

What to mine? Fielded Text Data

What does the raw fielded text data data look like?

- Fielded
- Delimited
- Structured

Author(s) AU:	Aragane, J. <mark>; Urushibata, H.</mark> ; Murahashi, T.	
Affiliation AF:	Central Res. Lab., Mitsubishi Electr. Corp., Hyogo, Japan	
Title TI:	Proton deficiency in a phosphoric acid fuel cell	
Journal JN:	Journal of the Electrochemical Society	
Date DA:	Jan. 1995	
Record Type RT:	Journal paper	
Subject(s) SU:	electrochemical electrodes. fuel cells. voltammetry	
-	(chemical analysis)	
Abstract AB:	In the in situ cyclic voltammetry that we have developed,	
	the anode potential was shifted, and hysteresis of the	
	anode potential appeared during the scanning of the	
	cathode potential when the hydrogen partial pressure was	
	decreased to ca. 5% at the anode. It was concluded that	
	proton deficiency was responsible for the hysteresis at	
	the anode. Further, at this hydrogen pressure in real	
	single-cell operation, the cathode potential (iR-free)	
	deviated from Nernst's law, which showed the interaction	
	between the anode potential and the cathode potential.	
	This means that anode polarization influenced cathode	
	polarization under a low hydrogen partial pressure where	
	the proton deficiency occurred	
Class. Codes CC:		
Date Indexed DI:	9502	
Dace indexed DI:	2002	

Tech Mining – 6 information types

Technical Information

- A. ST&I (Science, Technology & Innovation) Databases (e.g., Web of Science, INSPEC, Micropatents)
- B. Internet Sources (e.g., Googling)
- C. Technical Expertise

Contextual Information

- D. Business, competition, customer, popular, policy content
 Databases (e.g., Lexus-Nexus, Factiva)
- E. Internet Sources (e.g., blogs, website profiling)
- F. Business Expertise

The Search

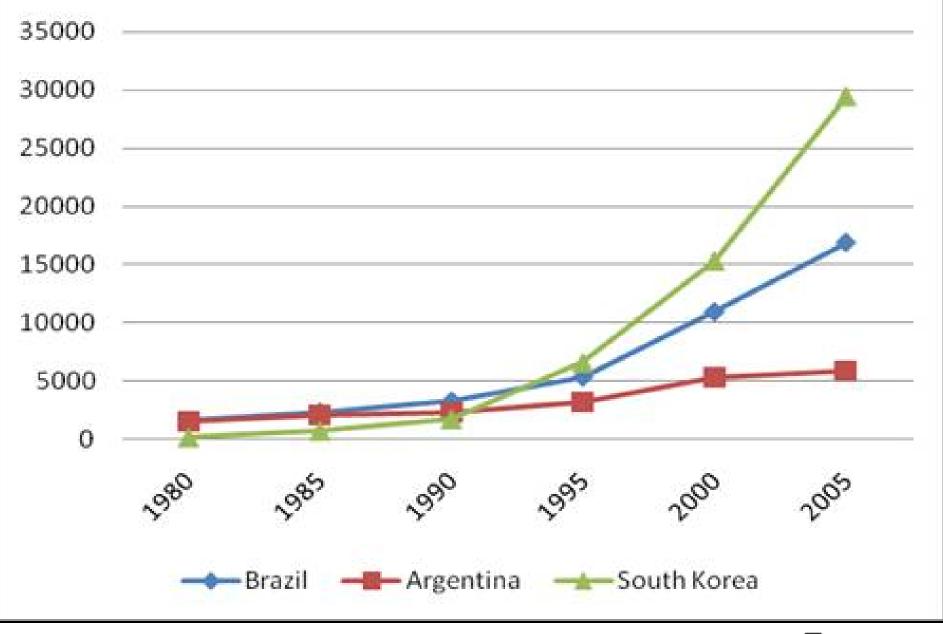
- Where to Search
 - Any Structured Text Databases
 - Dialog, STN, Micropatent, Excel,etc...
- How to Search
 - Standard Search Interfaces
- Search Strategy
 - Inclusive/Cast a broad net
- Downloading Search Results
 - The more fields the better
 - Dialog format 9, Tags On, Highlighting Off
 - STN IALL or ALL

How to do Tech Mining: 8-steps

- 1. Spell out the questions and how to answer them
- 2. Get suitable data
- 3. Search (iterate)
- 4. Import into text mining software (VantagePoint)
- 5. Clean the data
- 6. Analyze & interpret
- 7. Represent the "innovation indicators" well communicate!
- 8. Standardize and semi-automate where possible

Questions/Comments?

Draft – do not distribute © 2009 Search Technology, Inc.


2. Tech Mining Tales

- a. "Research Profiling" Country study: Brazil
- b. Biomaterials Patenting: Technology Opportunities Analyses
- c. NanoBioSensors: Innovation Path Mapping

Brazil Country Study, 2007 Search Technology, Inc., for US Navy

- Searches in Web of Science and EI Compendex
 - 17,965 articles with a Brazilian author in 2006 [SCI/SSCI]
 - 21,753 articles, 2003-2007 (partial) [Compendex]
 - Additional 5-year snapshots
- Overview of Brazilian S&T Institutions
- Resource for the Navy to locate potential research partners in Brazil

SCI/SSCI Publication Trend

Search Technology

Relative Research Emphases [SCI/SSCI]

Search Technology

Top 10 Collaborating Countries	# SCI/SSCI, 2005
Brazil	16936
USA	1965
France	694
UK	671
Germany	645
Canada	372
Argentina	343
Italy	324
Spain	296
Netherlands	211
Japan	207

Search Technology

Collaborating Country	Taxonomy Themes	Journals
# with Brazil		SCI/SSCI 2006
	Microbiology, Infectious	Physical Review B
	Diseases & Treatments [449]	[35]
	Diagnosis and Treatment of	Physical Review
	Chronic Diseases [395]	Letters [34]
	Computer Hardware,	
	Networks, and Algorithms	Physical Review D
	[234]	[26]
	Molecular & Cell Biology;	Physics Letters B
	Biophysics [220]	[18]
	Particle Physics & Field	Astrophysical
USA [2049]	Effects [206]	Journal [17]

Sample Research Profile for Leading Organizations

Title 💌		Author Affiliations (Cleaned)	Authors - Cleaned	Collaboration Note	Collaborating Countries
7 Items, 0 Selected		Top 5 Institutions	Top 5 Items	Top 2 Items	Top 5 Items
Effect of polymorphisms of t Gene by environment QTL Hypertension, obesity and Influence of ACE I/O gene p PCR screening for 22q11.2 Renin-angiotensin system p	658	<u>Univ Sao Paulo (USP)</u>	Pereira, A C [7]; Labruna, M B [C] Gennari, S M [6]; Ruffino-Netto, A [6]; Schumaker, T T S [6]; Tanus-Santos, J E [6]; Kaill, J [6]; Krieger, J E [6]; Donadi, E A [6]; Duarte, G [6]	Brazil Only [460]; Collaboration [198]	<u>USA [117]</u> ; <u>UK [21];</u> <u>France [18];</u> <u>Spain [15];</u> <u>Canada [15];</u> <u>Germany [15]</u>
	471	<u>Univ Fed Minas Gerais (UFMG)</u>	<u>Sader, H S [13];</u> <u>Oliveira, S C [11];</u> <u>Teixeira, M M [11];</u> <u>Jones, R N [11];</u> <u>Martins, O A [11]</u>	Brazil Only [326]; Collaboration [145]	<u>USA [85];</u> <u>France [17];</u> <u>Italy [13];</u> <u>Germany [12];</u> <u>UK [9]</u>
	249	Univ Fed Rio de Janeiro (UFRJ) rofile::Author Affiliations (Cleaned)-Top 5:1	de Souza, W [9]; <u>Schechter, M [7];</u> <u>Seldin, L [6];</u> <u>Fonseca, L D [5];</u> <u>Costa, WJEM [5];</u> <u>Scharfstein, J [5];</u> <u>Hajdu, E [5];</u> <u>Soares, M A [5]</u>	Brazil Only [159]; Collaboration [90]	<u>USA [43];</u> <u>UK [14];</u> France [10]; <u>Argentina [8];</u> <u>Germany [8]</u>

Search Technology

Brazil Country Study

- Profile the research activity of an entity of interest [a country, a company, a research group]
- Match against your own interests & strengths
- Identify promising areas & partners for collaboration
- Comments or questions?

- Innovation Mapping -White space Analysis for Biomaterials in Complex Patent Landscapes

Alan L. Porter, Georgia Tech alan.porter@isye.gatech.edu Michael Kayat, UTEK Corporation mkayat@utekcorp.com

ICIC - 2007

Premises

- The Challenge: Expedite Innovation
- The Foundation: Innovation Process Modeling
- The Tools: Tech Mining
- The Result: Innovation Mapping for intelligence & foresight [illustrated for Collagen Gel Opportunities]

How to Enhance Innovation?

- Manage based on strong competitive technical intelligence -CTI
 - Those who do so will win
 - Those who do not will lose
- Innovation Mapping can show the way
 - Understand the system & its key leverage points
 - Identify technology opportunities

Technological Innovation: The Conceptual Bases

- Recognize Technological Capabilities
- Focus on changes in function of products, processes, or services
- Draw upon models of technological change
 - Innovation (life cycle) processes
 - Technology substitution, transfer & diffusion
- Promote "OI" Open Innovation

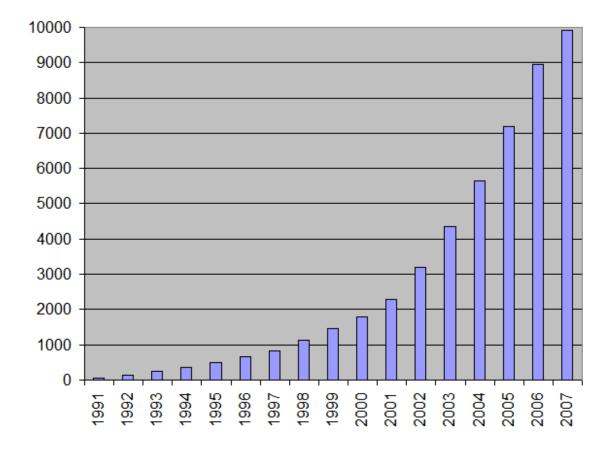
Innovation Mapping Elements I Technological Landscape

- Technological Advance
 - Capabilities
 - Applications
- Competitive/Collaborative Milieu
 - Key players
 - Profile their strengths & orientation
- Contextual Influences?
 - Stakeholders & Concerns
 - Regulations, standards, funding
- Future prospects

Innovation Mapping II: Market Prospects (not the emphasis in today's presentation)

- Market Opportunities
 - Sectors & Locations
 - Forecast
- Customer Needs
 - Currently identified & extrapolated
 - Lead users
- Innovation Implementation
 - External obstacles
 - Internal obstacles

"White Space" Analysis – Misnomer?


- Complex, multidimensional milieu
- Reduction to 2-D or 3-D is precarious
- Finding what's missing ("not there") is dicey
- Better to focus on "what is" along selected dimensions
- Provide derived empirical knowledge to a diverse expert body with requisite domain knowledge to stimulate discourse

Case: Polymer Biomaterials

- "Are there any new market spaces for [your idea here] which look relatively free of existing IP?"
- Market Prospects: A Quick Glance
 - Implants: global spending nearly \$120 billion/year
 - Biocompatible materials market projected to \$12 billion in 2008
 - Biomaterial polymers reached \$7 billion in 2003

Polymer Biomaterials

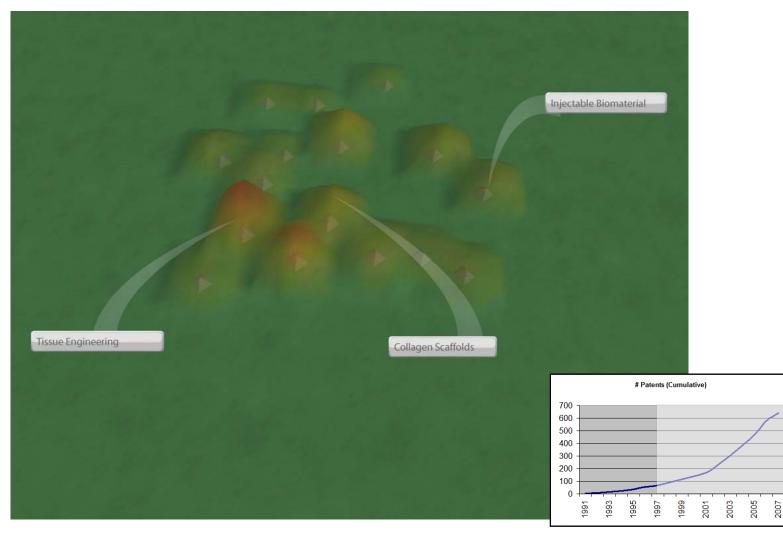
- Micropatents search yielded ~10,000 patents (not comprehensive)
- This constitutes the broad picture
- Could extend by examining research funding, research publications, business activity, etc. searches & analyses (not today!)

Application Domains

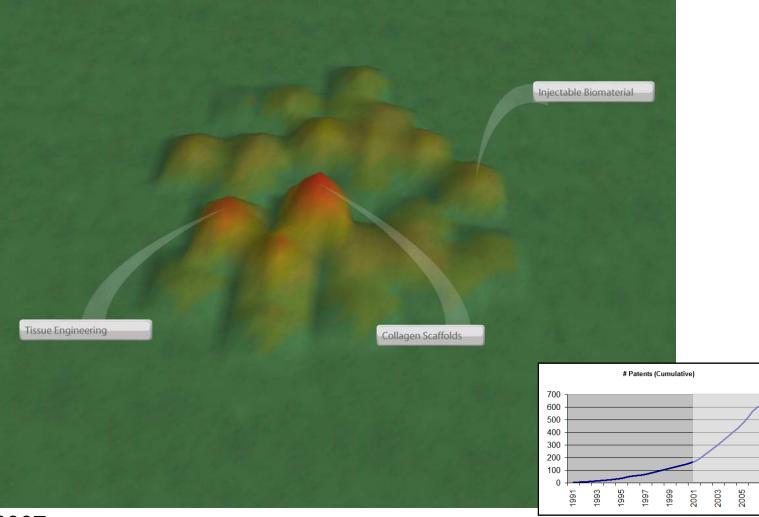
Leading International Patent Classes (IPC codes)

IPC Classes	#
A61K-Preparations For Medical, Dental, Or Toilet Purposes	4148
A61L-Methods Or Apparatus For Sterilising Materials Or Objects In General; Disinfection, Sterilisation, etc.	4043
A61F-Filters Implantable Into Blood Vessels; Prostheses; Orthopaedic, Nursing Or Contraceptive Devices; etc.	2782
C12N-Micro-Organisms Or Enzymes; Compositions Thereof; etc.	1477
A61B-Diagnosis; Surgery; Identification	1214

Focusing: For this illustration

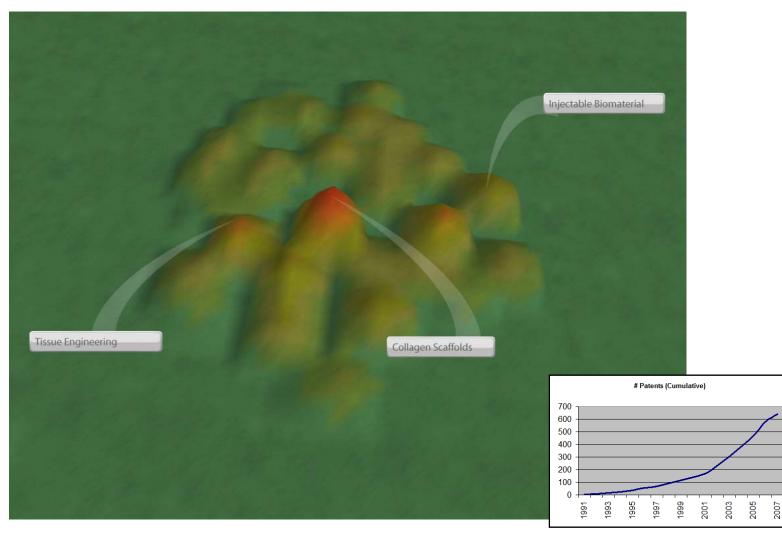

- Multidimensional various ways to cut 10,000 Biomaterials Patent set
- We selected on 2 dimensions:
 - Technology Type: Fibrous structural proteins
 [searched these patent records for collagen, fibrillin,
 laminin, proteoglycan, elastin, ECM, ...]

-~2200 patents


 Target Application Biosystem: skin [or derm] in claims

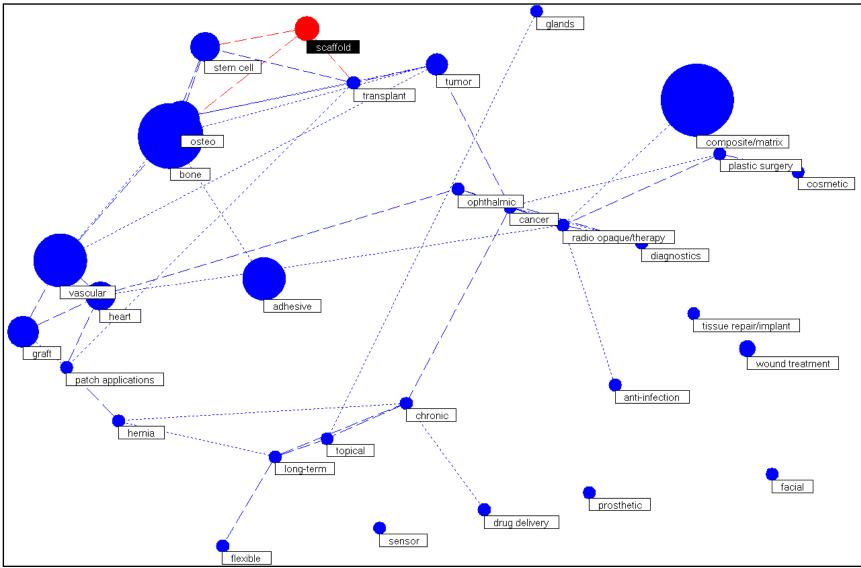
-~640 patents

Polymer Biomaterials : fibrous structural proteins : skin 1991-1997 (68 records)


Polymer Biomaterials : fibrous structural proteins : skin 1991-2001 (168 records)

2007

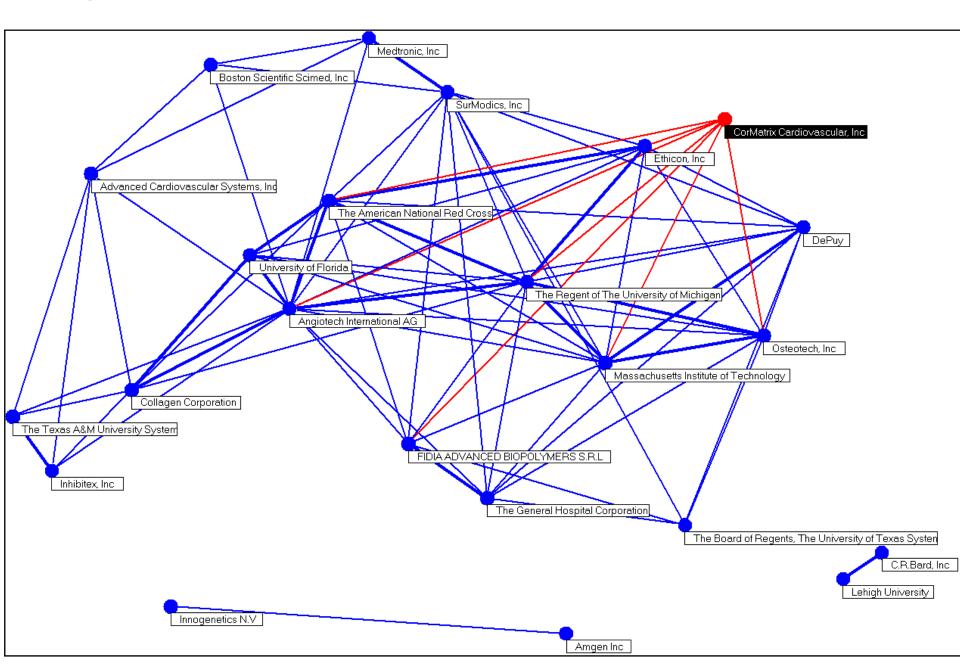
ICIC - 2007


Polymer Biomaterials : fibrous structural proteins : skin 1991-2007 (640 records)

Topic Detection

- Patent records lack keywords
- Class codes are very helpful, but not highly specific
- One approach: "entity extraction" apply a dictionary or rule-set to get at key phrases
 - e.g., Extracellular matrix (ECM) classes of biomolecules
- Another: apply a general-purpose natural language processor to extract terms (noisy); browse and classify large collections interactively.
 - e.g., Application/property terms in Claims

Application/Property Term Associations


Multi-dimensional Views

			11/ 414 0110 03 3											부족	
L II			laminin [57];			Ass	ignee	· / Applic	ant (C	leaned	i) (1)				
11			elastin [50];												
11			Chondroitin [46];				<u> </u>	CorMatrix		vascula	ar, Inc				
11	156	graft	fibronectin [41];	<u>8% of 156</u>			<u> ##</u>	Celxcel P	-						
11							<u> ##</u>	Encelle, Ir							
L II			glycosaminoglycans [37];					NVR LAB					- 6 7		
L II			keratan [31];			2	<u><u><u></u></u></u>	The Boar ASTACH			i ne un	iversity	oriex		
11			proteoglycan [31];				#	CHAIKOF							
11			heparan [17]				Ħ	Emory Un							
l li			collagen [103];				Ħ	FAUCHER	-						
11								FENG In		,					
11			Hyaluronic [72];											L N	
L II			elastin [54];			Dut	نادمان	on Year						읙	
11			fibronectin [50];				nicati	on rear						رب	
L II	123	scaffold	glycosaminoglycans [45];	11% of 123				P.	hlica	tion \	Vear				
L II		<u>scuroki</u>	<u>laminin [41];</u>	1170 01 125					Diluca		rear				
L II			Chondroitin [Chondroitin [31];			<u>د</u>								
L II			proteoglycan [25];			ll "T									
L II			heparan [21];											- 17	
L II			keratan [18]											- 17	
l li						4									
L II			collagen [85];												
L II			fibronectin [55];												
11			Hyaluronic [50];			3-									
11			elastin [36];												
L II			glycosaminoglycans [30];												
L II	110	tumor	Chondroitin [21];	<u>5% of 110</u>		2									
L II			laminin [17];												
L II															
L II			<u>keratan [12];</u>			1									
L II			proteoglycan [10];												
			heparan [8]												
			collagen [62];			0	ģ	<u>ġ</u> ż	ġ	ģ	4	ý ý	ġ Ŀ	-	
Ц			TT 1 1 10 41		▋▁ ▁ ┃		1999-	2000- 2001-	2002-	2003-	2004-	2005-	2006-	1	
∟	<u>P</u> IA P	rofile::Ap-Property Terms from Claims-	Top 19:2												

What -	Who -	When

	That The		
	Property Terms in Claims	Assignee / Applicant	Publication Year (2005-7)
212	adhesive	Angiotech International AG [11]; FIDIA ADVANCED BIOPOLYMERS S.R.L [11]; Massachusetts Institute of Technology [9]; DePuy [8]; The Regent of The University of Michigan [8]	<u>26% of 212</u>
156	<u>graft</u>	<u>Medtronic, Inc [17];</u> <u>Angiotech International AG [6];</u> <u>SurModics, Inc [5];</u> <u>Boston Scientific Scimed, Inc [5];</u> <u>Baxter International Inc [4];</u> <u>Orthogene, Inc [4];</u> <u>Advanced Cardiovascular Systems, Inc [4]</u>	<u>25% of 156</u>
123	<u>scaffold</u>	<u>CorMatrix Cardiovascular, Inc [7];</u> <u>Osteotech, Inc [6];</u> <u>FIDIA ADVANCED BIOPOLYMERS S.R.L [6];</u> <u>The Regent of The University of Michigan [6];</u> <u>Massachusetts Institute of Technology [5];</u> Ethicon, Inc [5]	<u>29% of 123</u>
110	<u>tumor</u>	FIDIA ADVANCED BIOPOLYMERS S.R.L [8]; The Regent of The University of Michigan [7]; Osteotech, Inc [6]; Ethicon, Inc [6]; Massachusetts Institute of Technology [4]; Orthogene, Inc [4]	<u>21% of 110</u>
83	wound treatment	FIDIA ADVANCED BIOPOLYMERS S.R.L [8]; <u>Amgen Inc [5];</u> <u>Innogenetics N.V [5];</u> <u>JSF Consultants Ltd [4];</u> <u>The Regent of The University of Michigan [3];</u> <u>The Board of Regents, The University of Texas System [3]</u>	<u>13% of 83</u>

Assignees based on Shared Topical Claims

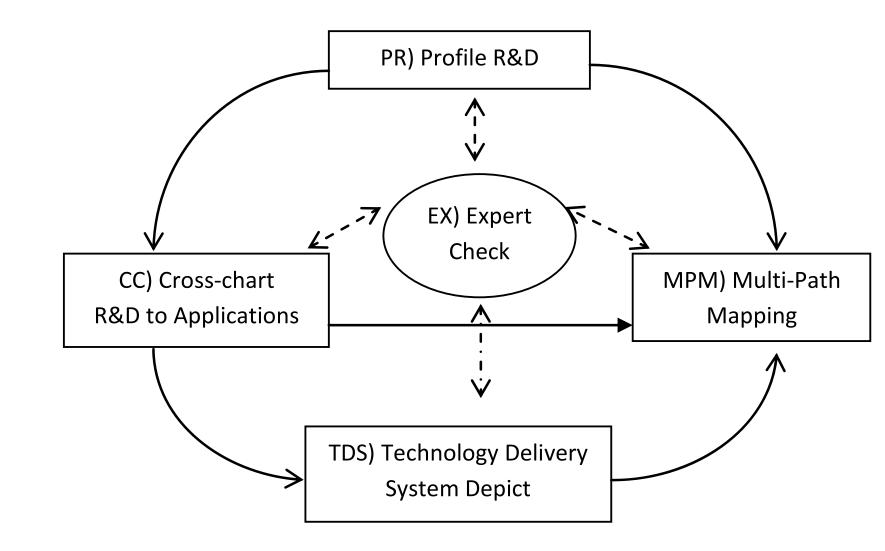
And Eventually... locate & study the "nuggets"

	<u> </u>			×				
Title	-	Reset	Assignee / Applicant (Cleaned) (1) 1 2 3 4 5 6 7 8 9 10 11 🔺 🛛 Ap-Property Terms fro					
,			# Records 168 515 150 22 163 161 68 266 83 139 103					
3 Items, 3 Selected Compositions for reconstruction Compositions for regenerating COMPOSITIONS FOR REGENE	defective or RATING DEFECTIV		Show Values >= 1 Conccurrence TT TISSUE Records T Tissue Records T tissue astin T tissue Records T tissue astin T tiss					
Pate	ent/Publication	W0200701						
rate	Number	110200701	ant					
	Title	COMPOSIT	TIONS FOR REGENERATING DEFECTIVE OR ABSENT TISSUE					
	nglish Claims (Independent)		ition for reconstruction, replacement or repair of a defect or damage in organ tissue, the composition comprising lar matrix.					
		A composition for reconstruction, replacement or repair of a defect, or damage in organ tissue comprising extracellular matrix, wherein said composition comprises a form selected from the group consisting of an emulsion, an injectable solution, a gel, a foam, a liquid, a paste, a powder, a spray, a vapor, a cream, a coating, a nanoparticle, a patch, a sheet, a laminate, a weave, a matrix, a fabric, a strand, a plurality of strands, a strip, a plurality of strips, a plug, a piece, and a plurality of pieces, and further comprises an additional component selected from the group consisting of: a) a cell, b) a peptide, polypeptide, or protein, c) a vector having a DNA capable of targeted expression of a e1ected gene, and d) a nutrient, a sugar, a fat, a lipid, an amino acid, a nucleic acid, a ribo-nucleic acid, an organic molecule, an inorganic molecule, a small molecule, a drug, or a bioactive molecule.						
			A composition for regenerating defective or absent myocardium and restoring cardiac function comprising an emulsified or injectable extracellular matrix composition from a mammalian or synthetic source.					
		matrix deriv from the gr a selected molecule, a A patch for	ition for regenerating defective or absent myocardium and restoring cardiac function comprising an extracellular rived from a mammalian or synthetic source, said composition thrther comprising an additional component selected proup of: a) a cell, b) a peptide, polypeptide, or protein, c) a vector having a DNA capable of targeted expression of d gene, and d) a nutrient, a sugar, a fat, a lipid, an amino acid, a nucleic acid, a ribo-nucleic acid, an organic an inorganic molecule, a small molecule, a drug, or a bioactive molecule.					
	Assignee / Applicant		ning at two or more points. Cardiovascular, Inc					
			4 Encelle, Inc 4 2 3 4 4 4 4 4 SciMed Life Systems, Inc 4					

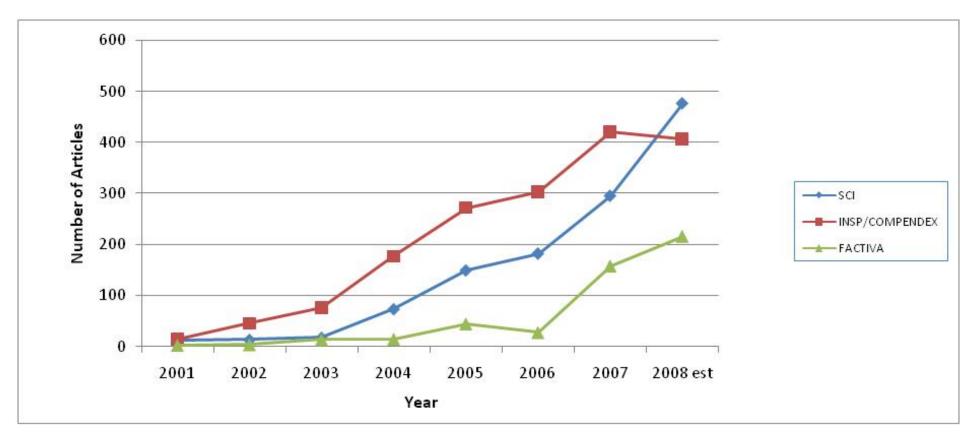
Biomaterials in Complex Patent Landscapes

- •Focus on the "MOT" questions to be answered
- Patent landscaping can show "blackspaces" of high activity
- •Tech Mining can provide "breakout" details on players and topics of particular concern

•Comments/questions?

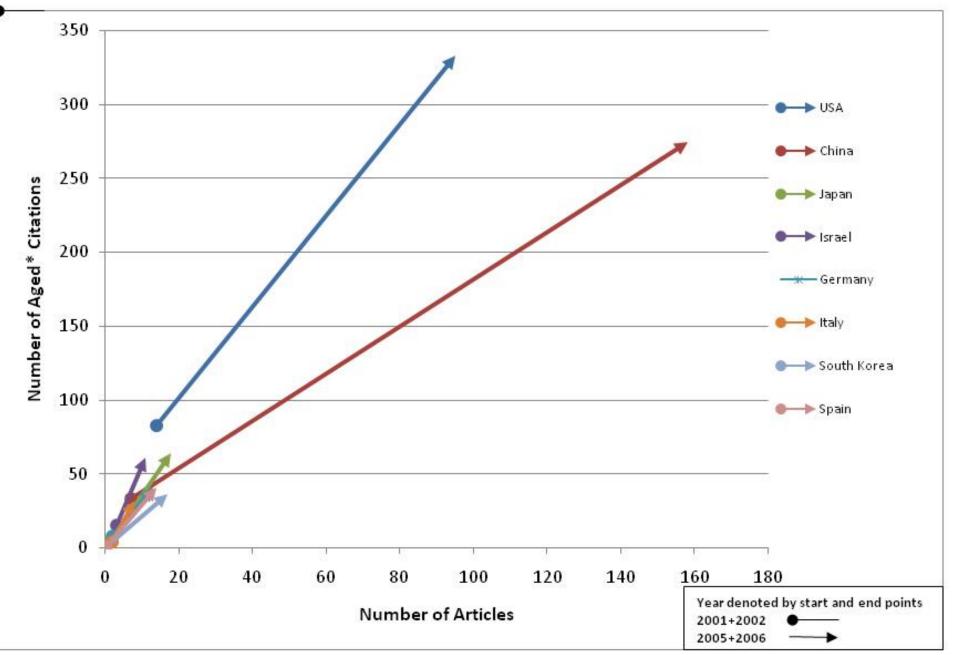

Nano-enhanced Biosensors Case

- 1. Pursuing 2 "zoom in" analyses within Nano this year
 - Nano interests [to get to local knowledge]
 - 2 Beijing Institute of Technology PhD students ~research methods + dissertation
 - Lu Huang leading this study
 - Ying Guo leading on nano-enhanced, thinfilm solar cells
- 2. In stages, via papers

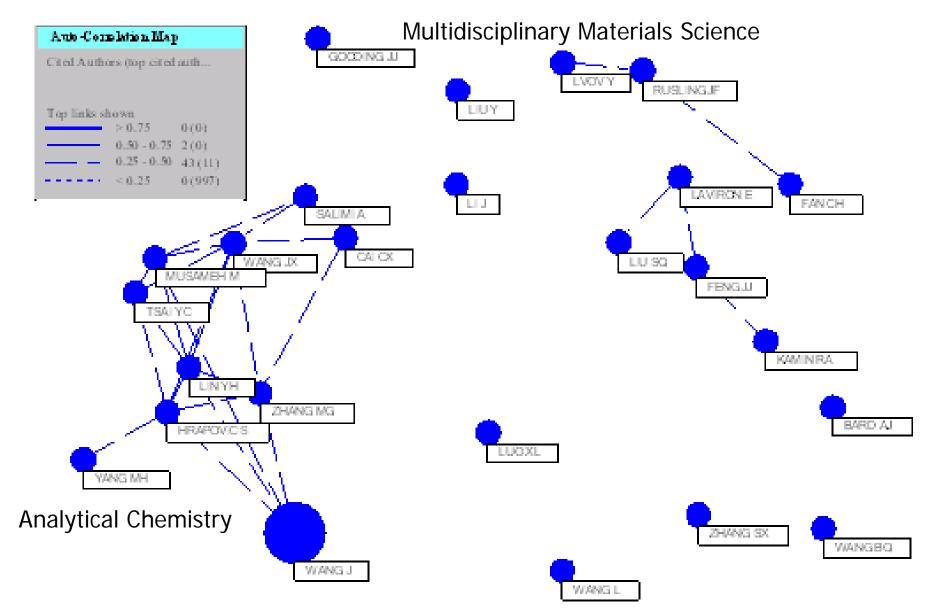

Search & Retrieval

- 1. Databases
 - Began with the GT nano search sets
 - Science Citation Index (SCI a component of the Web of Science),
 - INSPEC & EI Compendex
 - Factiva [no GT nano search set here]
- 2. Most of these examples draw from SCI

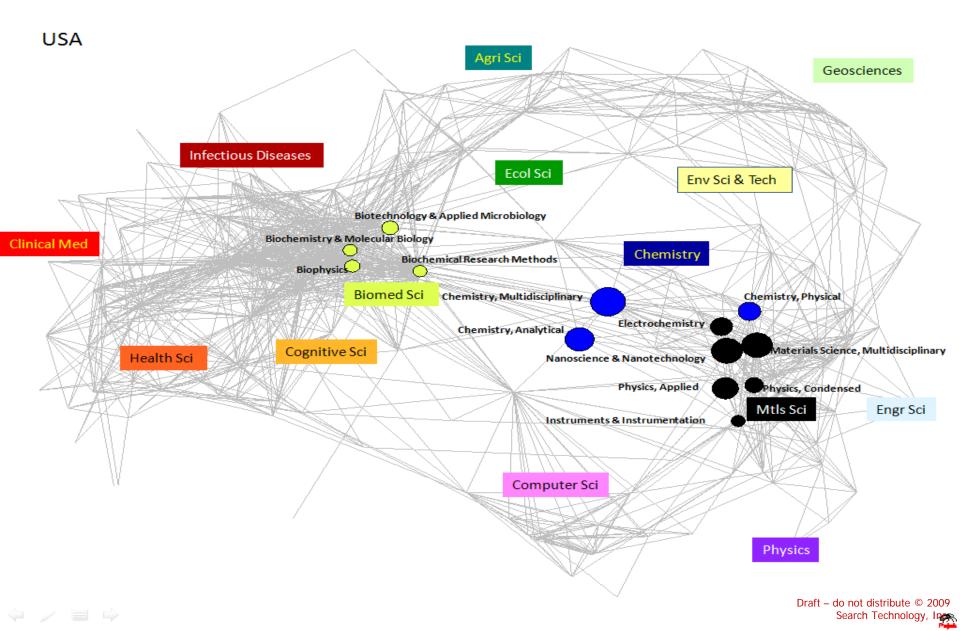
Innovation Pathway Modeling



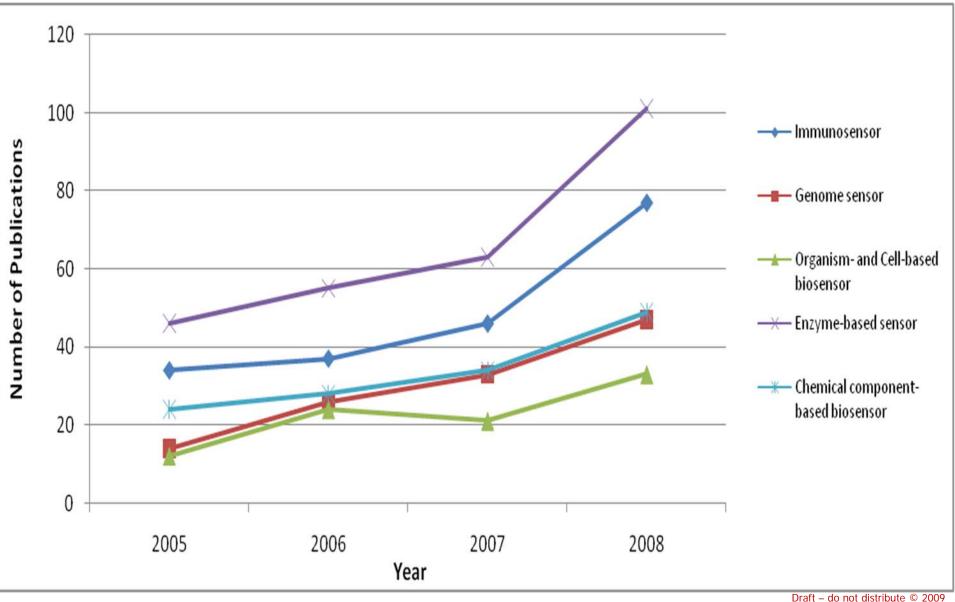
NanoBioSensor Activity Trends

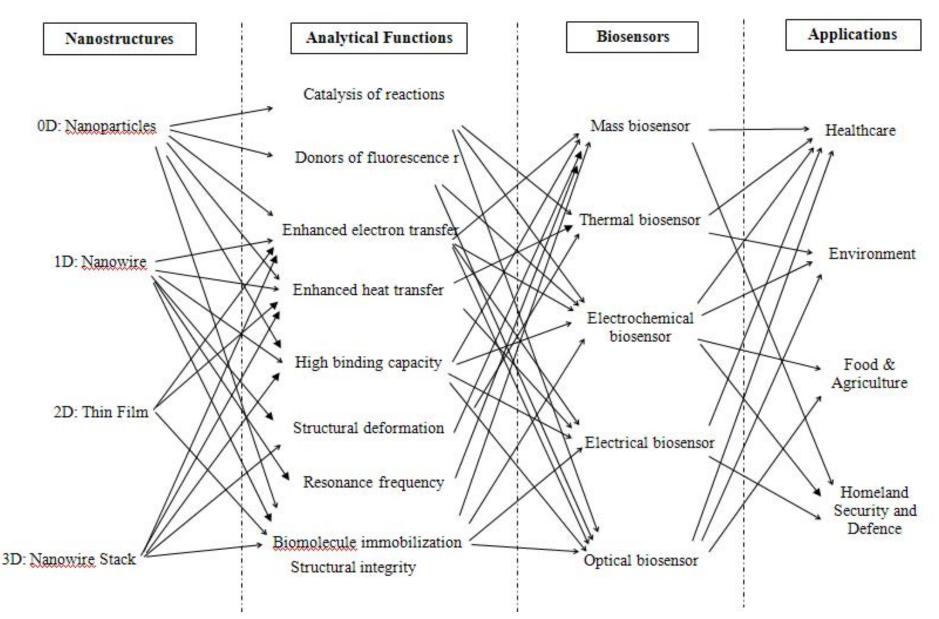

Special interest: Take-offs and Lags (~3 years to business/popular attention)

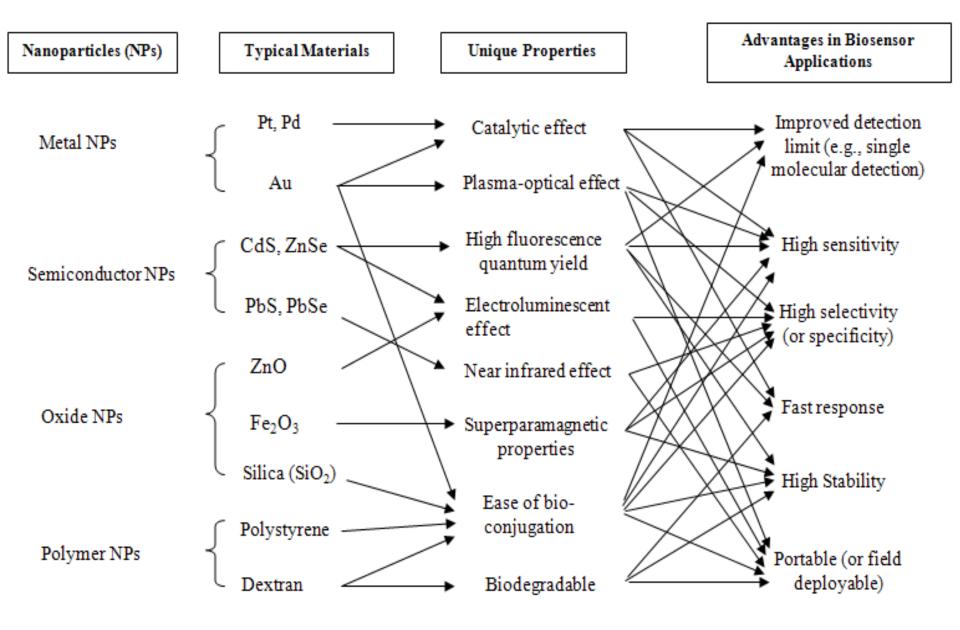
NanoBioSensor -- National Quantity + Quality Indicators



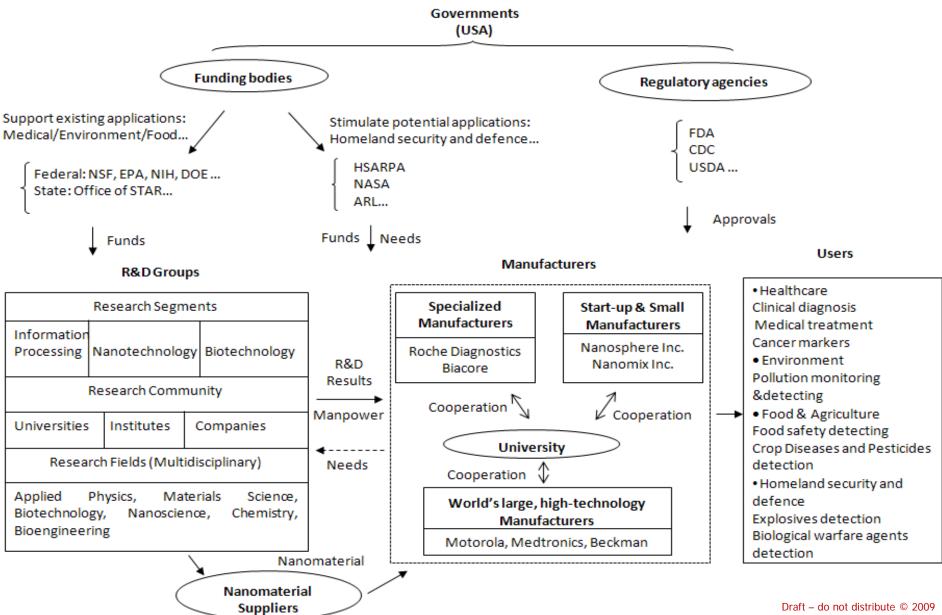
Draft - do not distribute © 2009


Research Network Mapping: Portion of Co-citation Map


Locating US Nanobiosensor Research in the Map of Science


Biosensor Application Emphases

Technology-Function-Application ["T-F-A"] Cross-chart

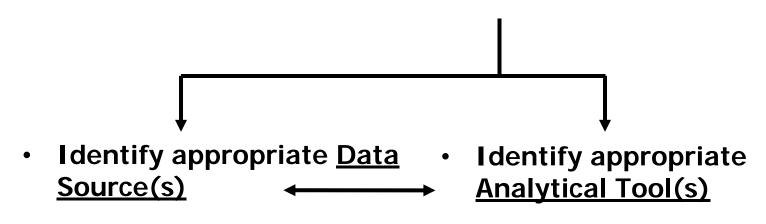

More Specific Nanoparticles T-F-A Cross-chart

Zoom in further: One Type of Nanoparticle -- Gold

Functions	Biosensor	Sensor advantages	Typical examples
Biomolecule immobilization	Enzyme-based sensor	Improved stability and sensitivity	Bienzyme amperometric biosensor using gold nanoparticle-modified electrodes for the determination of inulin in foods (c.f., Manso J , 2008).
Catalysis of reactions	Enzyme-based sensor	Improved sensitivity and selectivity	Glucose biosensor based on Au nanoparticles (c.f., Xian YZ, 2005).
Labeling biomolecules	Immunosensor	Improved sensitivity Indirect detection	Horseradish peroxidase-functionalized gold nanoparticle label for amplified immunoanalysis based on gold nanoparticles/carbon nanotubes hybrids modified biosensor (c.f., Rongjing Cui, 2008).
Enhancement of electron transfer	Genome sensors	Improved sensitivity Direct electrochemistry of proteins	Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence- specific DNA(c.f., Cai H, 2001).

Technology Delivery System (general)

Actor Analysis


	Supports	Barriers
Governments	 Strong financial support 	 High regulatory barriers
R&D groups	 Steep increase in literatures Multidisciplinary cooperation Strong cooperation with manufacturers 	 Far away from commercialization Lack of good integration of biosensor into easy-to-use systems
Manufacturers	 Promising market prospects Strong cooperation with universities Ever-growing number of companies offering nanomaterials 	 Separate market segments High standards of door-step to markets High cost with needed performance Scaling up manufacture of nanomaterials
Users	 Plenty of needs Plenty of potential users 	 Needs beyond present ability Safety Use friendly

Nano-enhanced Biosensors Case

- 1. Trends & Quality Indicators
- 2. Mapping
 - a. Research networks
 - b. Science overlay maps
- 3. Innovation Pathway Mapping
 - 1. T-F-A Cross-charting
 - 2. Enhanced TDS
- 4. Comments/questions?

The Tech Mining Approach:

- Define the Management of Technology (MOT) <u>Issues</u>
- Break out particular MOT <u>Questions</u>
- Identify candidate empirical <u>Indicators</u>

Design Effective composite <u>Representations</u>

Competitive Technical Intelligence (CTI): Who, What, When, Where?

- Profile R&D Domain(s) of concern:
 - Who?
 - What?
 - When?
 - Where?
- Map Relationships: Network Analyses & Science Overlay Maps
- Analyze Trends: What's Hot & What's Coming
- Develop Innovation Indicators
- Then, locate "nuggets" to be read

Resources

- Open Innovation: The New Imperative for Creating and Profiting from Technology, by Henry Chesbrough, Harvard Business School, Cambridge, MA (paperback edition), 2006.
- *Tech Mining* by Alan Porter and Scott Cunningham, Wiley, 2005.
- www.theVantagePoint.com offers multiple papers and some case analyses, including:
 - Lu Huang et al., Identifying Emerging Nanoparticle Roles in Biosensors, *IAMOT Proceedings*, 2009 [case & methods illustration from this + an article building upon this]
 - Various "Tech Mining" papers

Open Discussion

1. Introduction

- a. Open Innovation
- b. Tech Mining
- 2. Tech Mining Tales
 - a. "Research Profiling" Country study: Brazil
 - Biomaterials Patenting: Technology Opportunities Analyses
 - c. NanoBioSensors: Innovation Path Mapping

3. How could these tools work for you?